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Quantum analysis of a microcavity-tuned Bloch oscillator for

tunable spontaneous emission and absorption of terahertz

radiation

G. J. Iafrate

Department of Electrical and Computer Engineering,

North Carolina State University, Raleigh, North Carolina 27695-8617

Abstract

In this study, we investigate the spontaneous emission of radiation for a Bloch electron travers-

ing a single energy miniband of a superlattice in an external homogeneous electric field subjected

simultaneously the influence of resonant microcavity and dephasing effects from an internal in-

homogeneous electric field. It is shown that the spontaneous emission for the cavity-enhanced

Bloch electron probability amplitude becomes damped and frequency shifted due to the perturb-

ing inhomogeneity when treated in a long-time, time-dependent perturbation theory relative to the

Bloch-accelerated dynamics in the electrodynamic radiation field. The frequency shift is shown to

be proportional to the diagonal matrix elements of the Hamiltonian for the perturbing inhomo-

geneity with respect to the instantaneous Bloch eigenstates, and the damping term is shown to

be proportional to the off-diagonal transition matrix elements of the perturbing Hamiltonian with

the instantaneous eigenstates summed to the appropriate final states as determined in a golden-

rule like fashion. The resulting general theory is reduced for the specific cases of an abrupt and

smoothly varying potentials but emphasis is given to the special case of a comb of Slater-Koster

interface impurities with randomly distributed interface roughness at all lattice sites. From the

Slater-Koster case, the relaxation time approximation is developed where the damping term is

considered to be a constant and the frequency shift is ignored. Analysis of total power shows

that dephasing degradation effects are more than compensated for by enhancements derived by

microcavity confinement.
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I. INTRODUCTION

A theory of microcavity enhanced spontaneous emission (SE) for a Bloch electron travers-

ing a single energy band accelerating in an external constant electric field has been recently

examined by the author and colleagues.1 The theoretical analysis was fully quantum me-

chanical in that the quantized radiation field was described in terms of the dominant TE10

rectangular microcavity waveguide mode in the Coulomb gauge; also the instantaneous

eigenstates of the Bloch Hamiltonian were utilized as the basis states in describing the

Bloch electron dynamics to all orders in the constant electric field. Analysis of the proba-

bility amplitudes, over integral multiples of the Bloch period, resulted in selection rules for

photon emission in both photon frequency and wave vector showing preferable transitions to

the Wannier-Stark ladder levels; it was shown that the SE emission rate could be enhanced

by tuning the emission frequency to align with the cavity mode spectral density peak, thus

resulting in an output power of several microwatts in the terahertz spectral range for a

GaAs-based superlattice imbedded in a microcavity.

In this study, the analysis of microcavity enhanced spontaneous emission (MESE) for a

Bloch electron accelerating through a single miniband of a superlattice structure was ex-

tended to include the additional interaction of the electron with a perturbing inhomogeneous

electric field arising from impurities or interface roughness inherent from the superlattice

material process.2 The intent in studying the effects of such perturbing inhomogeneities is

to determine their role in limiting the MESE process due to scattering influences that de-

phase the coherency of the Bloch oscillation, and to establish a quantitative determination

as to how the MESE selection rules are influenced by such perturbations. For that purpose,

the Hamiltonian for the Bloch electron in the quantum electrodynamic field of interest is

developed (Sec. II). The classical external electric field is described in the vector poten-

tial gauge, and the quantized electromagnetic radiation field is described by the dominant

microcavity TE10 rectangular waveguide mode in the Coulomb gauge; the general inhomo-

geneous electric field is treated in the scalar potential gauge. In neglecting the higher-order

quantum field-field interaction term, it is shown that the total Hamiltonian for this problem

reduces to the sum of three contributions, the Hamiltonian for the Bloch electron in the

classical external electric field interacting with the inhomogeneity, the Hamiltonian of the

free quantized electromagnetic field, and the Hamiltonian for the first-order interaction be-
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tween the cavity quantum field and the accelerated Bloch electron. Then, the instantaneous

eigenstates of the Bloch Hamiltonian and the states of the free radiation field are utilized as

basis states in describing the time development, and in calculating the SE transition rates

of the accelerated Bloch electrons under the simultaneous perturbing action of the quan-

tum cavity radiation field and the inhomogeneous potential energy (Sec. III). In treating

the perturbing inhomogeneity in long-time, time-dependent perturbation theory relative to

the Bloch-accelerated system in the electrodynamic radiation field, it is found that the SE

amplitude for the cavity-enhanced Bloch electron radiation becomes damped and frequency

shifted in the off diagonal and diagonal matrix elements of the inhomogeneous potential

energy with respect to the instantaneous Bloch eigenstates. In Sec. IV, the general theoret-

ical analysis is applied to the specific cases where the inhomogeneous potential is a slowly

varying or, in contrast, an abruptly varying function of the coordinates as well as a comb

of Slater-Koster impurities of varying strength positioned at all the lattice cites. Here it is

found that the frequency shift is a constant, and the damping constant is slowly varying

with the Brillouin zone vector. Therefore, for purposes of showing trends with regard to

simple dephasing effects, the dephasing analysis is carried out in Sec. V for the case where

the damping term is a constant and the frequency shift is ignored; also a numerical estimate

of SE power is provided. In Sec. VI, a summary of the most important results is given;

most importantly, our analysis of the total power shows that dephasing degradation effects

are more than compensated for by the enhancements derived by microcavity-based confine-

ment engineering. Section VII contains two Appendixes, Appendix A and Appendix B; in

Appendix A, we provide the details of the time-dependent perturbation theory analysis used

to calculate the probability amplitude, and Appendix B provides the details of calculation

of matrix elements of perturbation Hamiltonian.

II. QUANTUM APPROACH

The dynamical properties are considered for the situation in which the electron is confined

to a single miniband “n0” of a superlattice with energy εn0(K) while the effects of interband

coupling are ignored.3 Therefore, the quantum dynamics is described by the time-dependent

Schrödinger equation

ih̄
∂

∂t
|Ψn0(t)〉 = H|Ψn0(t)〉 , (1)
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where the exact Hamiltoian H = [p− (e/c)A]2/2m0 +Vc(r)+Hr +V (r, t) can be reduced to

a sum of the following separate Hamiltonians H = H0+V (r, t)+Hr +HI . Here, the first two

terms represent the Hamiltonian, H0(t) = [p + pc(t)]
2/2m0 + Vc(r), for single electron in a

periodic crystal potential, Vc(r), interacting with a homogeneous electric field E, and V (r, t)

is the potential energy for the inhomogeneous electric field due to the impurities or interface

roughness; also Hr is the Hamiltonian for the cavity mode electromagnetic radiation field (m0

is the free-electron mass, c is the velocity of light in vacuum). The total vector potential in

the exact Hamiltonian consists of A = Ac+Ar, where Ac = −(c/e)pc describes the external

electric field with pc(t) = e
∫ t

t0
E(t′)dt′ = eEt for the time-independent homogeneous electric

field turned on at initial time t0 = 0; Ar describes the TE10 cavity mode of the quantized

radiation field Er with the frequency ωq given by

Ar,y =
∑
qz

√
4πh̄c2

ωqεV
sin(qxx)

(
âqe

iqzz + â†qe
−iqzz

)
, (2)

where â†q and âq are the photon boson creation and annihilation operators, ε is the dielectric

constant of the medium filling the waveguide of the length Lz and cross section Lx × Ly,

V = LxLyLz, and qx = π/Lx. For the chosen system geometry, the corresponding electric

field Er is polarized in the direction of the dc field, which is assumed to be along the

y axis (also the superlattice growth direction). The normalization constant in Eq. (2) is

chosen in such a way that the Hamiltonian for the quantized radiation field has the form

Hr =
∑

q h̄ωqâ
†
qâq, where ωq = ωc[1 + (qz/qx)

2]1/2 is the mode dispersion relation, and

ωc = qxc/
√

ε is the angular cutoff frequency. The guided mode wavelength is written

as λ = λc/[(ωq/ωc)
2 − 1]1/2, where λc = 2Lx is the cutoff wavelength.4 The Hamiltonian

HI(t) = −(e/m0c)Ar·[p+pc(t)], for the first-order interaction between the quantum field and

the Bloch electron, couples both subsystems H0 and Hr, and causes transitions between the

accelerated Bloch electron states through photon absorption and emission. Then, starting

with the reduced Hamiltonian H = H0 +V (r, t)+Hr +HI , use is made of first-order, early-

time time-dependent perturbation theory5 to calculate SE transitions probabilities between

states of H0 +Hr while regarding HI(t) ∼ Ar · [p+pc(t)] as a perturbation, and at the same

time, use is made of a long-time perturbation theory analysis6 to calculate the relaxation

influence of V (r, t) on the SE transition probabilities. This time scaling is justified since SE

rates are orders of magnitude faster than relaxation times due to V (r, t).
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III. QUANTUM DYNAMICS BASED ON INSTANTANEOUS EIGENSTATES

The solution for |Ψn0(t)〉 in Eq. (1) can be represented in terms of the eigenstates of basis

states |ψn0k(t), {nq,j}〉 = |ψn0k(t)〉 |{nq,j}〉 of the unperturbed Hamiltonian H0 + Hr as

|Ψn0(t)〉 =
∑

k

∑

{nq,j}
A{nq,j}(k, t)|ψn0k(t), {nq,j}〉

×exp

{
− i

h̄

∫ t

t0

[εn0(k(t′)) +
∑
q,j

h̄ωqnq,j]dt′
}

, (3)

where the summation over k is carried out over the entire Brillouin zone, and {nq,j} is

specified over all possible combinations of photon occupation number nq,j with photon wave

vectors q and polarization j = 1, 2. The instantaneous eigenstates of H0 are given3 by

ψn0k(t)(r, t) = Ω−1/2eiK·run0k(t)(r, t) , where un0k(t)(r, t) is the periodic part of the Bloch

function, k(t) = K + pc(t)/h̄, and the values of the electron wave vector K are determined

by the periodic boundary conditions of the periodic crystal of volume Ω.

For the case of one-photon SE, which assumes that initially no photons are present in the

field, the probability amplitude in the wave function of Eq. (3) satisfies the initial condition

A{nq,j}(k, t0) = {δnq,j ,0} δK,K0 at time t = t0 when the electric field is turned on. Here, K0

and n0
q,j = 0 are the initial values of K and nq,j. Thus, the instantaneous eigenstates of H0

satisfy the equation3

{
1

2m0

[p + pc(t)]
2 + Vc(r)

}
ψn0k(t) = εn0(k(t))ψn0k(t) , (4)

and the basis states for Hr are given by the well-known free photon field equation

Hr|{nq,j}〉 =
∑
q,j

h̄ωqnq,j|{nq,j}〉 , (5)

where |{nq,j}〉 is a simple product of all possible combinations of photon number states,

nq,j, with a given wave vector q and polarization ε̂q,j.

The appropriate time-dependent equations of motion for the A{nq,j}(k, t) coefficients ex-

pressed in Eq. (3) can be found in Appendix A; these equations relate the time rate of

change of A{nq,j}(k, t) to the basis-dependent matrix elements of HI and V (r, t) through a

self-consistent set of equations. In applying early-time, first-order perturbation theory to

the ”HI” coefficients of the set of equations, and applying a long-time, Wigner-Weiskopf-like

approximation to the ”V ” coefficients of the set of equations, we obtain (see Appendix A) a
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closed form inhomogeneous equation for the one-photon SE amplitude [here {nq,j} → n = 1]

at k0(t) = K0 + pc(t)/h̄ as

Ȧn(k0, t)− 1

ih̄
fk0k0(t)An(k0, t) +

1

h̄2

∫ t

0

dt′
∑

k′ 6=k0

fk0k
′ (t)f ∗

k0k
′ (t′)An(k0, t

′)

= Ȧ0
q(k0, t) +

1

ih̄

∑

k
′ 6=k0

fk0k
′ (t)A0

q(k
′
, t) . (6)

Here,

fk0k
′ (t) = Vk0k

′ exp

{
i

h̄

∫ t

0

{εn0 [k0(t
′)]− εn0 [k

′
(t′)]}dt′

}
, (7)

where Vk0k
′ = (ψn0k0(t), V ψn0k

′
(t)) are the appropriate matrix elements of the perturbing

inhomogeneity V (r, t), and

A0
q(k0, t) = D(qx/q)

1/2

∫ t

0

dt′ vy[k0(t
′)− qs]

×exp

{
− i

h̄

∫ t′

0

{εn0 [k0(t1)]− εn0 [k0(t1)− qs]− h̄ωq}dt1

}
, (8)

the probability amplitude for the microcavity-based SE alone.1 Also, D = −i
√

πcα/ωcεV ,

α = e2/h̄c is the fine structure constant, qs = {±qx, 0, qz} with ” + ” for s = 1 and ”− ” for

s = 2, vy(k(t)) = (1/h̄)∇Kyεn0(K)|k(t), the y component of Bloch velocity in the band, and

q = (q2
x + q2

z)
1/2.

IV. ANALYSIS OF DEPHASING FOR PARTICULAR MODELS OF INHOMO-

GENEITY

The solution for An(k0, t) in Eq. (6) depends explicitly on the potential energy V (r, t) ,

through fk0k
′ (t) as noted in Eq. (7). In general, the time dependence of fk0k

′ (t), expressed

through the time dependent matrix elements of V (r, t) and through the time dependence

of accelerated instantaneous energy eigenstates in the phase of fk0k
′ (t), makes finding the

solutions for An(k0, t) in Eq. (6) formidable. However, for the type of potential energy

function of interest in this problem, that is, one where V (r, t) ≡ V (r), a function of position

alone, and where V (r) is a comb of abruptly changing, Slater-Koster like, interface impurities

with randomly distributed interface roughness, it can be shown7 that fkk′ (t) is expressed as

fkk
′ (t) = VKK

′ e−
i
h̄
[η(K)−η(K

′
)] e

i
h̄
[ε̄n0 (K⊥)−ε̄n0 (K′⊥)]t. (9)
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It is important to note that VKK
′ , η(K), and ε̄n0(K⊥) are all time independent. VKK

′ are

the matrix elements of the interface inhomogeneities; η(K) and ε̄n0(K⊥) are band structure

dependent only, and are given by

η(K) =
∞∑

ly=1

2 εn0(aly,K⊥)

ωBly
sin(Kyaly), (10)

with

εn0(aly,K⊥) =
1

Ny

∑
Ky

εn0(Ky,K⊥)e−iKyaly , (11)

and

ε̄n0(K⊥) =
1

Ny

∑
Ky

εn0(Ky,K⊥) , (12)

the average value of εn0(K) along the Ky direction in the Brillouin zone, independent on

Ky; Ny is the number of lattice sites along the y axis. For nearest-neighbor tight-binding

considerations, only the term with ly = 1 need be retained in Eqs. (10) and (11). Then,

in utilizing fkk
′ (t) from Eq. (9) in Eq. (6), and anticipating the ensemble average over the

randomly distributed interface roughness coordinates, which renders the ensemble average

over the fkk′ (t) term on the right-hand side of Eq. (6) equal to zero, then the ensemble

averaged equation for An(k0, t) reduces to

Ȧn(k0, t)− 1

ih̄
Vk0k0An(k0, t) +

1

h̄2

∑

k
′ 6=k0

|Vk0k
′ |2 e−

i
h̄
[η(K0)−η(K

′
)]

×
∫ t

0

dt′ e
i
h̄
[ε̄n0 (K0⊥)−ε̄n0 (K′⊥)](t−t

′
)An(k0, t

′) = Ȧ0
q(k0, t) . (13)

This is an inhomogeneous differential equation in time for An(k0, t), where the inhomogeneity

on the right-hand side is the time derivative of the SE for the cavity-based result alone [see

Eq. (8)]. This equation can be readily solved by the Laplace transform method in the

long-time limit to obtain

An(k0, t) =

∫ t

0

dt
′
Ȧ0

q(k0, t
′) e−i∆ω(k0)t′ e−

Γ(k0)
2

t′ , (14)

where

∆ω(k0) =
1

h̄
Vk0k0 +

1

h̄

∑

k′ 6=k0

|Vk0k
′ |2

ε̄n0(K0⊥)− ε̄n0(K
′⊥)

e
2
h̄

Im[η(K0)−η(K
′
)] , (15)

and

Γ(k0) =
2π

h̄

∑

k′ 6=k0

|Vk0k
′ |2 e

2
h̄

Im[η(K0)−η(K
′
)] δ[ε̄n0(K0⊥)− ε̄n0(K

′⊥)] . (16)
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This result for An(k0, t) in Eq. (14) shows that the SE for the cavity-enhanced Bloch electron

probability amplitude becomes damped by Γ(k) in Eq. (16) and frequency shifted by ∆ω(k)

given in Eq. (15) due to the perturbing influence of the assumed interface inhomogeneity

and the spatially localizing effect of the constant electric field from η(K) defined in Eq. (10).

It is interesting to note that the result obtained in Eq. (14) is strikingly reminiscent of the

result obtained for the solution of the kinetic Boltzmann equation8 for the carrier distribu-

tion function in the relaxation time approximation. Therefore, in an approach similar to

analyzing the complications of the Boltzmann theory, we first consider the model, noted as

the relaxation time approximation, where ∆ω ≡ 0 and Γ(k) is a constant, independent of

k, to analyze, in the simplest heuristic approximation, the degrading effects of dephasing.

V. RELAXATION TIME APPROXIMATION

In this section, for purposes of showing heuristic trends with regard to simple dephasing

effects, the dephasing analysis is carried out for the case where the damping term is a

constant and the frequency shift is ignored. Then, it follows from Eqs. (14)-(16) that the

one-photon SE probability amplitude [i.e., {nq,j} → n = 1] can be presented as

Aq(k0, t) = D(qx/q)
1/2

∫ t

t0

dt′ vy(k0 − qs)e
−(t′−t0)/τ

×exp

{
− i

h̄

∫ t′

t0

[εn0(k0)− εn0(k0 − qs)− h̄ωq]dt1

}
, (17)

where τ has the meaning of the characteristic mean dephasing time. Equation (17) can be

formally rewritten as

Aq(k0, t) = D(qx/q)
1/2

∫ t

t0

dt′ vy(k0 − qs)

×exp

{
− i

h̄

∫ t′

t0

[εn0(k0)− εn0(k0 − qs)− h̄ω̃q]dt1

}
, (18)

with a renormalized complex photon ”energy” h̄ω̃q = h̄ωq + ih̄ωτ , where ωτ = 1/τ . Thus the

emission process results in the SE probability

P s
e (t) =

∑
q

∑
s=1,2

|Aq(k0, t)|2 . (19)
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A. Selection rules

In evaluating Aq(k0, t), we take into account that the external dc field, E, is along the y

axis; then, it follows that k0y(t) = K0y + eE(t− t0)/h̄. In taking advantage of the periodic

properties of the terms in Eq. (17), Aq(k0, t) is evaluated in clocked integral multiples of

the Bloch period, so that t = NτB, where τB = 2π/ωB, the time to traverse one period of

the Brillouin zone. The integral in Eq. (17) over time can be replaced by an integral over

k0y through the substitution dt = (h̄/eE)dk0y. Then the probability amplitude, at integral

multiples of the Bloch period, can be expressed through that over the single Bloch period,

τB.3,9 Thus we obtain

Aq(k0, NτB) =

[
1− exp(−iNβ̃q)

1− exp(−iβ̃q)

]
Aq(k0, τB) , (20)

where the complex parameter β̃q is given by

β̃q = 2π
ω̃q

ωB

+
1

eE

∫ K0y+Gy

K0y

dk0y [εn0(k0)− εn0(k0 − qs)] , (21)

and Gy = 2π/a, the y component of the SL reciprocal-lattice vector. From Eq. (20) the

corresponding squared probability amplitudes are expressed as

|Aq(k0, NτB)|2 = η(ωq; N, τ) |Aq(k0, τB)|2 , (22)

where the ”transfer” function η(ωq; N, τ) is given by

η(ωq; N, τ) =
sh2(πN/τωB) + sin2(πNωq/ωB)

sh2(π/τωB) + sin2(πωq/ωB)
e−2π(N−1)/τωB . (23)

From Eqs. (22) and (23), it is seen that for the limiting case of πN/τωB ¿ 1, i.e., when

the electron scattering is not essential even for many Bloch oscillations (N) in the time scale

of the scattering time τ , the quantity |Aq(k0, NτB)|2 will reach its maximum growth value

when βq = 2π(m + δ), where βq = Re(β̃q), m is an integer and δ → 0; for this limit, the

function η(ωq; N, τ) is reduced to the function η(ωq, N) previously obtained in the absence

of scattering:9 η(ωq, N) = sin2(Nβq/2)/ sin2(βq/2) → N2, i.e., it becomes sharply peaked

at the resonances with increasing N . It is clear that this condition for maximum growth

establishes the selection rule3,9 for both the photon emission frequency, ωq, and the key wave

vector component, qz. Indeed, from the condition βq = 2πm, it follows from Eq. (21) in the
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radiative long-wavelength limit (qa ¿ 1) that one generally10 has

ωq = mωB, qz = qzm ≡ qx

[(
m

ωB

ωc

)2

− 1

]1/2

; (24)

this shows the “Stark ladder” resonance frequency condition, along with the sustaining

wave vector cavity resonance conditions. Thus, the modes that radiate with the highest

probability correspond to the fundamental Bloch frequency and its harmonics. These quan-

tization conditions are obtained without requiring any assumptions concerning the existence

of Wannier-Stark energy states. In Figs. 1 and 2, we show the modification of the behavior

of η(ωq; N, τ) with increasing the intensity of scattering (decreasing τ) calculated for reason-

able scattering (NτB/τ = 1) and strong scattering (NτB/τ = 4), respectively, with N = 10.

It is seen that the peak positions are negligibly affected, although the peak spectral width

becomes broadening and the peak value is reduced with decreasing ratio τ/τB, as shown in

Figs. 3 and 4. From this result, it is noted that the maximum growth condition for the prob-

ability amplitudes in Eqs. (22) and (23) still establishes the selection rules for spontaneous

emission given in Eq. (24) despite the increasing intensity of scattering (τνB
>∼ 1).

It is worth to emphasize that in what follows the equation (22) should be considered

simultaneously with the equation (24), i.e., both established resonance conditions for the

emission photon frequency and wave vector should be taken into account explicitly in eval-

uating the spontaneous emission probability spectra given by |Aq(k0, τB)|2.

B. General expression for the total SE probability

The total spontaneous emission probability is evaluated at time t = NτB, P s
e = P s

e (NτB),

by substituting |Aq(k0, NτB)|2 from Eq. (22) into Eq. (19). The sum over q in Eq. (19) has

been replaced by an integral over q, taking into account the TE10 mode density of states

and polarization such that
∑

q(· · ·) → (Lz/π)
∫

dq(· · ·)/[1− (qx/q)
2]1/2. Thus we can write

P s
e =

Lz

π

2∑
s=1

∫
dq η(ωq; N, τ)

|Aq(k0, τB)|2
[1− (qx/q)2]1/2

. (25)

The integral can be evaluated by using the property of the integrand which contains a sharply

peaked, symmetric function of q, η(ωq; N, τ), at q = qm ≡ (q2
x + q2

zm)1/2 [see Eq. (24)]. We

note that with decreasing the scattering time τ , the maximum values of this function are

11



suppressed relatively its peak value, N2, corresponding to an infinite τ (Figs. 3 and 4).

However, its sharp and oscillatory behavior still preserved for the scattering time not much

less than the inverse Bloch frequency νB, i.e., for τνB
>∼ 1 (Figs. 1 and 2). In what follows we

assume such values of τ and νB that satisfy this inequality. Thus, at every node defined by

the resonance conditions, the slowly varying function of q in the integrand can be replaced

by its value evaluated at q = qm, and then removed from the integral over q; after that, we

obtain

P s
e = IN(τνB)

LzωB

Lxωc

lmax∑

l=1

2∑
s=1

|Aql
(k0, τB)|2

[1− (qx/ql)2]1/2
. (26)

Here lmax follows from qmax = lmax(ωB/ωc)qx, and determines the upper limit in the sum

over higher Bloch oscillation harmonics. The integral IN(τνB) is determined by

IN(τνB) = e−(N−1)/τνB
2

π

∫ π/2

0

dx
sh2(N/2τνB) + sin2(Nx)

sh2(1/2τνB) + sin2(x)
. (27)

The calculation of P s
e in Eq. (26) requires the use of Aq(k0, τB) in Eq. (17), evaluated

at the maximum growth conditions of Eq. (24), that is when h̄ωq = mh̄ωB and q = qm. In

addition, the dependence upon q in Eq. (17) is made explicit by invoking the assumption

of photon long-wavelength limit, which is valid for all periodic potentials of interest, even

superlattices, where q ¿ π/a. Thus, we find that

Aql
(k0, τB) = − 2π

ωB

(
qx

ql

)1/2

DIl exp(iK0yaω̃ql
/ωB) , (28)

where

Il =
1

2π

∫ π

−π

dϑk[vy(ϑk)exp(ϑk/2πτνB)] exp(−ilϑk) (29)

is the l-th Fourier component of the function vy(ϑk) exp(ϑk/2πτνB), ϑk = k0ya, and ω̃ql
=

lωB+i/τ . Since the electron velocity component vy(ϑk) depends on details of the superlattice

miniband structure, such dependence comes explicitly into the SE probability amplitude

through the integral Il given by Eq. (29); thus

|Aql
(k0, τB)|2 =

qx

ql(ωB/2π)2
|DIl|2 exp(−K0ya/πτνB) . (30)

C. Analysis of the total SE probability for specific energy miniband

The analysis for spontaneous emission and radiation characteristics is now developed

by considering a quite general form of the electron energy miniband dispersion relation

12



expressed as

εn0(K) = εn0(0) +
∞∑

l′=1

∆l′ sin
2 l

′
aKy

2
+ ε⊥(K⊥) , (31)

where εn0(0) is the miniband edge, ∆l
′ is the width of the l

′
-th miniband harmonic of

the superlattice, and ε⊥(K⊥) is the contribution from the perpendicular components of the

band. Such form of the energy band dispersion in the superlattice growth direction generally

includes long range coupling over the neighboring QWs with a relative strength measured by

the specific value of the ratio ∆l′+1/∆l′ < 1, which is strongly dependent upon the extent of

wave function overlap. In particular, the well-known case of nearest-neighbor tight-binding

(NNTB) approximation corresponds with purely harmonic energy dispersion where only the

single term (l
′
=1) is considered significant, so that next nearest neighbor and longer range

QW wave function overlaps are assumed to be negligibly small. The electron group velocity

in the general miniband of Eq. (31), for the given Ky in the y direction, is then given by

vy(Ky) = (1/h̄)(∂εn0(Ky)/∂Ky) =
∑∞

l′=1 vl′ sin(l
′
aKz), where vl′ = l

′
a∆l′/2h̄, the maximum

velocity associated with the l
′
-th miniband of band width, ∆l′ . Substituting the expression

for vy(Ky) in Eq. (29), one can find

Il =
1

2πi
v1Sl sh(1/2τνB) , (32)

where

Sl =
∞∑

l
′
=1

vl′

v1

{
cos[π(l

′ − l)]

i(l′ − l) + 1/2πτνB

+
cos[π(l

′
+ l)]

i(l′ + l)− 1/2πτνB

}
. (33)

Then the probability amplitude in Eq. (30) can be obtained as

|Aql
(k0, τB)|2 =

qxv
2
1

qlω2
B

|DSl|2sh2

(
1

2τνB

)
exp

(
−K0ya

πτνB

)
. (34)

The total spontaneous emission probability is calculated from Eqs. (26) and (34) as

P s
e = 2αIN(τνB) ε1/2 Lx

Ly

v2
1

c2

ω2
c

π2ω2
B

sh2

(
1

2τνB

)
exp

(
−K0ya

πτνB

) lmax∑

l=1

|Sl|2
l[1− (ωc/lωB)2]1/2

. (35)

Then, it follows that for the pure harmonic miniband (l
′
= 1) the integral in Eq. (32) is

reduced to the expression

Il = (−1)lπv1
sh(1/2τνB)

[(1/2τνB)2 − π2(l2 − 1)]− iπl/τνB

, (36)

13



thus to obtain from Eq. (34) for the probability amplitude

|Aql
(k0, τB)|2 = π2|D|2 ωcv

2
1

ω3
Bl

4π2sh2(1/2τνB) exp(−K0ya/πτνB)

(πl/τνB)2 + [(1/2τνB)2 − π2(l2 − 1)]2
; (37)

here account has been taken for the wave vector ql = qxlωB/ωc, and v1 = a∆1/2h̄. In

particular, approaching τ to infinity, we obtain the expressions characteristic for the limiting

case when the scattering is totaly ignored, i.e., Il = −i(v1/2)δ1l and

|Aql
(k0, τB)|2 = π2|D|2 ωcv

2
1

ω3
B

δ1l . (38)

Thus, we arrive to the conclusion that for the electron dynamics in a purely harmonic

miniband when only single Fourier component of the electron velocity vy(ϑk) with l = 1 is

nonzero and in the absence of scattering (τ →∞), all probability amplitudes |Aql
(k0, τB)|2

are zero except the one, l = 1, corresponding to the fundamental Bloch frequency according

to the selection rule established by Eq. (24). However, with finite τ values the higher Bloch

harmonics generation becomes possible even in the pure harmonic superlattice miniband.

It is seen that with increasing τ , the effect of higher Bloch harmonics generation in the

pure harmonic miniband is suppressed, and for τ → ∞ it is totaly disappeared. In noting

the contribution from higher harmonics of Bloch frequency into the total SE probability,

note that the NNTB approximation in Eq. (31) is obtained by letting ∆l′ = ∆1δ1l′ so that

vl
′ = v1δ1l

′ . The occurrence of the Kronecker symbol, δ1l
′ , allows the contribution of l

′
= 1

term only whereas all the other terms are equal to zero, thereby limiting, within the NNTB

approximation and without of scattering, the generation to the fundamental Bloch harmonic.

From equations (26) and (37), the total spontaneous emission probability becomes

P s
e = 2αIN(τνB) ε1/2 Lx

Ly

v2
1

c2

ω2
c

ω2
B

lmax∑

l=1

4π2sh2(1/2τνB) exp(−K0ya/πτνB)

l[1− (ωc/lωB)2]1/2 {(πl/τνB)2 + [(1/2τνB)2 − π2(l2 − 1)]2} .

(39)

D. Total SE power estimate

It follows from Eqs. (39) that spontaneous emission probability corresponding to the

fundamental Bloch harmonic (l = 1) is given by

P s
e (l = 1, τ) = 8π2αIN(τνB) ε1/2Lx

Ly

v2
1

c2

ω2
c

ω2
B

sh2(1/2τνB) exp(−K0ya/πτνB)

[1− ωc/ωB)2]1/2[(π/τνB)2 + (1/2τνB)4]
. (40)
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In noting that the SE probability of Bloch radiation in the absence of scattering is given1

by the expression

P s
e (l = 1, τ →∞) = 2αN

Lx

Ly

v2
1

c2

ε1/2ω2
c

ω2
B(1− ω2

c/ω
2
B)1/2

, (41)

we can compare both the probabilities for SE at fundamental Bloch frequency into the

waveguide TE10 mode with and without the scattering taking into account analyzing the

ratio

P r
se ≡

P s
e (l = 1, τ)

P s
e (l = 1, τ →∞)

=
1

N
IN(τνB)

sh2(1/2τνB)

(1/2τνB)2[1 + (1/4πτνB)2]
; (42)

here use has been made of Eq. (40) for the P s
e (l = 1, τ) with zero value of the electron initial

wave vector component in the direction of the constant electric field. From this equation,

we obtain for the limit of τ → ∞, with N finite, the expected result P r
se → 1. Also, for

this limit, the integral (27) becomes a linear function of N , IN(τνB → ∞) = N , and the

result of Eq. (40) goes to that of Eq. (41). For finite values of the dephasing time τ , it

is seen from Eqs. (40) and (41) that the linear dependence of P s
e on N in Eqs. (41) is

replaced by the factor IN(τνB) which is a slower increasing function of N . The dependence

of IN(τνB) on N is shown in Fig. 5 for several values of the parameter τνB. In Fig.

6, we show the dependence of the relative SE probability P r
se [Eq.(42)] calculated as a

function of number of Bloch oscillations N at different values of dephasing parameter τνB.

It is seen that the degrading effect of dephasing on the total SE probability within the

relaxation time approximation, P s
e , is that it becomes damped with the extent of damping

dependent on the parameter τνB. For numerical estimation of the damping, we assume

that τνB = 10 and N = 10 which corresponds to the case of reasonable scattering with the

characteristic parameter τνB/N = 1. Then using the data of Fig. 6 (upper curve), we obtain

P r
se ' 0.5, that is the total SE probability, and thus the generated power of spontaneous

emission, is damped approximately by a factor of 2 due to dephasing in comparison with

that in the absence of scattering. Then, assuming the previously analyzed conditions1 for

the superlattice parameters, the applied electric field, and the waveguide parameters, we can

use the estimated SE power output in the absence of scattering, W ' 3 µW , which results in

the estimation of the damped SE power generated under dephasing effects as W ' 1.5 µW .
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VI. SUMMARY OF THE MOST IMPORTANT RESULTS

• The quantum electron dynamics and spontaneous emission of radiation for a Bloch

electron traversing a single energy miniband of a superlattice accelerating under the

influence of superimposed constant external and inhomogeneous internal electric fields

while radiating into a microcavity have been analyzed. The analysis is based on the

use of instantaneous eigenstates of the Bloch Hamiltonian good to all orders of the dc

field, and to first-order perturbation theory in the quantized radiation field.

• It is shown that the spontaneous emission for the cavity-enhanced Bloch electron

probability amplitude becomes damped and frequency shifted due to the perturbing

inhomogeneity when treated in a long-time, time-dependent perturbation theory rela-

tive to the Bloch-accelerated dynamics in the electrodynamic radiation field.

• It is found the frequency shift is proportional to the diagonal matrix elements of the

Hamiltonian for the perturbing inhomogeneity with respect to the instantaneous Bloch

eigenstates, and the damping term is proportional to the off-diagonal transition matrix

elements of the perturbing Hamiltonian with the instantaneous eigenstates summed

to the appropriate final states as determined in a golden-rule like fashion.

• The analysis for the special cases (slowly or abruptly varying inhomogeneities as well

as a comb of Slater-Koster impurities with varying strength positioned at all lattice

sites) showed that the frequency shift is a constant, and the damping term is slowly

varying with Brillouin zone wavevector.

• The general analysis allowed to justify the relaxation time approximation where the

damping term is considered to be a constant and the frequency shift is ignored; in

this case, it is shown that the selection rules for spontaneous emission are negligibly

affected, although the total probability for emission shows interesting damping and

mixing characteristics.

• The spontaneous emission rate in the terahertz frequency range has been analyzed as

a function of the Bloch frequency, the external electric field, number of oscillations,

and dephasing parameter. The analysis of the total power shows that the dephasing

degradation effects are more than compensated for by the enhancements derived by

microcavity-based confinement engineering.
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VII. APPENDIXES

APPENDIX A: TIME-DEPENDENT DOUBLE PERTURBATION THEORY AP-

PROACH

The equation for the probability amplitudes A{nq,j}(k, t) in Eq. (3) is given by

dA{nq,j}(k, t)

dt
=

1

ih̄

∑

k′

∑

{n′q,j}
A{n′q,j}(k

′
, t)〈{nq,j}, ψn0k(t)|(HI + V )|ψn0k

′
(t), {n

′
q,j}〉

×exp

{
− i

h̄

∫ t

t0

[εn0(k
′
(t′))− εn0(k(t′)) +

∑
q,j

(n
′
q,j − nq,j)h̄ωq]dt′

}
. (A1)

We assume that at initial time, t0, the system is in one of the eigenstates of Hamilto-

nian H0 + Hr with wave function |ψn0K0 , {n0
q,j}〉, corresponding to the Bloch electron in

a single band “n0” with the wave vector K0, i. e., ψn0K0 = (1/Ω1/2) eiK0·run0K0 , and

with the initial distribution of photon numbers in the radiation field |{n0
q,j}〉. Substituting

A{nq,j}(k, t) = A
(0)
{nq,j}(k, t) + A

(1)
{nq,j}(k, t) + ... into Eq. (A1), and taking into account the

initial condition A{nq,j}(k, t0) = {δnq,j ,n0
q,j
}δk(t),k0(t), one obtains to the zeroth and first order

in HI for A
(0)
{nq,j}(k, t) and A

(1)
{nq,j}(k, t), respectively,

A
(0)
{nq,j}(k, t) = {δnq,j ,n0

q,j
}δk(t),k0(t) , (A2)

and

dA
(1)
{nq,j}(k, t)

dt
− 1

ih̄

∑

k′
A

(1)
{nq,j}(k

′
, t)Vk,k′exp

{
− i

h̄

∫ t

t0

[εn0(k
′
(t′))− εn0(k(t′))]dt′

}

=
1

ih̄
〈{nq,j}, ψn0k(t)|HI |ψn0k

′
0(t), {n0

q,j}〉

×exp

{
− i

h̄

∫ t

t0

[εn0(k0(t
′))− εn0(k(t′)) +

∑
q,j

(n0
q,j − nq,j)h̄ωq]dt′

}
. (A3)

Matrix elements for perturbation operator HI (Appendix B) are given by

〈{nq}, ψn0k(t)|HI |ψn0k0(t), {n0
q}〉 =

√
πcα

ωcεV

∑

q′z

∑
s=1,2

1

[1 + (qz
′/qx)2]1/4

∇kyεn0 [k(t)]

×
[√

n0
q
′ (δn

q
′ ,n0

q
′−1; {δnq,n0

q
}) δk0,k−q′s

+
√

n0
q
′ + 1(δn

q
′ ,n0

q
′+1; {δnq,n0

q
}) δk0,k+q′s

]
, (A4)

where α = e2/h̄c is the fine structure constant.
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For shortness of notations, Eq. (A3) can be written as

Ȧn(k, t)− 1

ih̄

∑

k
′

fkk
′An(k

′
, t) = Ȧ0

n(k, t) , (A5)

with

fkk
′ = Vkk

′ exp

{
− i

h̄

∫ t

t0

[εn0(k
′
(t′))− εn0(k(t′))]dt′

}
, (A6)

where Vkk′ is defined in Eq. (B10), and

Ȧ0
n(k, t) =

1

ih̄
〈{nq,j}, ψn0k(t)|HI |ψn0k

′
0(t), {n0

q,j}〉

×exp

{
− i

h̄

∫ t

t0

[εn0(k0(t
′))− εn0(k(t′)) +

∑
q,j

(n0
q,j − nq,j)h̄ωq]dt′

}
. (A7)

Also to simplify notations, we designated A
(1)
{nq,j}(k, t) ≡ An(k, t). Then separating terms

with diagonal and off-diagonal matrix elements fk,k′ in Eq. (A5) so that

Ȧn(k, t)− 1

ih̄
fkkAn(k, t)− 1

ih̄

∑

k
′ 6=k

fkk′An(k
′
, t) = Ȧ0

n(k, t) , (A8)

the equation for An(k
′
, t) in the third term on the left-hand side of (A8) can be written in

a similar fashion

Ȧn(k
′
, t)− 1

ih̄
fk′kAn(k, t)− 1

ih̄

∑

k′′ 6=k

fk′k′′An(k
′′
, t) = Ȧ0

n(k
′
, t) . (A9)

Following to the Wigner-Weiskopf-like approximation, we ignore the third term on the right-

hand side of (A9); then, after integration on time, we find

An(k
′
, t) =

1

ih̄

∫ t

t0

dt
′
fk′k(t

′
)An(k, t

′
) + A0

n(k
′
, t) , (A10)

where we have taken into account that An(k
′
, t0) = δk

′
,k0

, i.e., is equal to zero for k
′ 6= k0,

and

A0
n(k, t) =

∫ t

t0

Ȧ0
n(k, t

′
)dt

′
. (A11)

Thus, by making use of (A10) in Eq. (A8), we obtain the latter equation in the form

Ȧn(k, t)− 1

ih̄
fkkAn(k, t) +

1

h̄2

∑

k
′ 6=k

fkk′ (t)

∫ t

t0

dt
′
f ∗
kk
′ (t

′
)An(k, t

′
)

= Ȧ0
n(k, t) +

1

ih̄

∑

k′ 6=k

fkk′ (t)A
0
n(k

′
, t) . (A12)
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APPENDIX B: MATRIX ELEMENTS OF PERTURBATION HAMILTONIAN

Matrix elements of perturbation Hamiltonian HI for the perturbing quantum radiation

field are calculated by substituting HI given in Sec. II, with the vector potential Ar of

Eq. (2), and the wave function ψn0k(t); then we obtain

〈{nq}, ψn0k(t)|HI |ψn0k
′
(t), {n

′
q}〉 = − e

m0c

√
4πh̄c2

ωcεV

∑

q′z

1

[1 + (qz
′/qx)2]1/4

×
[√

n
′
q′

(δn
q
′ ,n′

q
′−1; {δnq,n′q

}) I
(+)

k,k′
+

√
n
′
q′

+ 1(δn
q
′ ,n′

q
′+1; {δnq,n′q

}) I
(−)

k,k′

]
, (B1)

where the first term on the right-hand side of Eq. (B1) is due to absorption of a photon

from the radiation field by the Bloch electron and the second term represents emission of a

photon by the Bloch electron to the radiation field; also we denoted (δn
q
′ ,n′

q
′±1; {δnq,n

′
q
}) ≡

δn
q
′ ,n′

q
′±1

∏
q6=q′ δnq,n′q

and

I
(±)

k,k′
=

∫
ψ∗n0k

cos(qxx)(p + pc)ye
±iq

′
zzψn0k

′dr , (B2)

where (p + pc)y is the y component of [p + pc(t)]. In using ψn0k(t)(r, t) =

Ω−1/2eiK·run0k(t)(r, t) , the integrals I
(±)

k,k′
are equal to zero except when K

′ −K ± qs = G,

where G is the vector of reciprocal lattice and qs = {±qx, 0, qz} with ” + ” for s = 1 and

” − ” for s = 2 (Here we omit, for brevity, the prime on the q vector). For values of K

and qs in the first Brillouin zone, we can take G = 0. Then, it follows that K
′
= K ∓ qs,

and since k(t) = K + pc(t)/h̄, then we get k
′
= k∓ qs. In this case, the integrals I

(±)

k,k
′ are

obtained as

I
(±)

k,k
′ =

1

2

∑
s=1,2

I±s δk′ ,k∓qs
, (B3)

with

I(±)
s =

1

Ω0

∫
(eiKr0un0k)

∗(p + pc)ye
iKr0un0k∓qsdr0 , (B4)

where the integration over dr0 is carried out over the primitive cell volume Ω0. In the

long-wavelength limit (qa ¿ 1), the integrals I(±)
s can be approximated as

I(±)
s =

1

Ω0

∫
(eiKr0un0k)

∗(p + pc)ye
iKr0un0kdr0 =

∫
ψ∗n0k

(p + pc)yψn0kdr . (B5)

In noting that the well-known momentum8 expectation value for Bloch states is
∫

(eik(t)run0k)
∗p (eik(t)run0k)dr = m0v[k(t)] , (B6)
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where v[k(t)] = (1/h̄)∇Kεn0(K)|k(t), it then follows, for k(t) = K + pc(t)/h̄ in Eq. (B6),

that ∫
ψ∗n0k

(p + pc) ψn0kdr = m0v(k) . (B7)

Thus, Eqs. (B3) - (B7) become

I
(±)

k,k
′ =

1

2
m0vy(k)

∑
s=1,2

δk
′
,k∓qs

. (B8)

Then, using (B1) and (B8), the matrix elements of HI are established for use in Eq. (A4).

Matrix elements of the perturbing inhomogeneity V are diagonal with respect to the

photon quantum numbers

〈{nq}, ψn0k(t)|V |ψn0k
′
(t), {n

′
q}〉 = {δnq,n

′
q
}Vkk

′ , (B9)

where we denoted for the matrix elements of V between the instantaneous eigenstates

Vkk′ = (ψn0k(t), V ψn0k
′ (t)) =

∫
ψ∗n0k(t)V (r, t)ψn0k

′ (t)dr . (B10)
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FIG. 1: Dependence of the relative probability spectral density of spontaneous emission η(ωq)

[transfer function of Eq. (23)] on the normalized photon frequency ωq/ωB calculated at resonable

scattering τνB = 10 for N = 10.
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FIG. 2: Dependence of the relative probability spectral density of spontaneous emission η(ωq)

[transfer function of Eq. (23)] on the normalized photon frequency ωq/ωB calculated at strong

scattering τνB = 2.5 for N = 10.
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Eq.(24) as a function of number of Bloch oscillations N at different values of dephasing parameter

τνB [5.0 ≤ τνB ≤ 10.0]. The dashed curve shows the dependence of ηmax ∼ N2 corresponding to

τνB →∞, i.e., in the absence of dephasing effects.
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Microcavity enhancement of spontaneous emission for Bloch oscillations
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A theory for the spontaneous emission of a Bloch electron traversing a single energy miniband of a super-
lattice while accelerating under the influence of a constant external electric field and radiating into a micro-
cavity is presented. In the analysis, the quantum electromagnetic radiation field is described by the dominant
microcavity TE10 rectangular waveguide mode in the Coulomb gauge, and the instantaneous eigenstates of the
Bloch Hamiltonian are utilized as the basis states in describing the Bloch electron dynamics to all orders in the
constant external electric field. The results show that the spontaneous emission amplitude, when analyzed over
many integral multiple values of the Bloch period, gives rise to selection rules for photon emission in both
frequency and wave number with preferred transitions at the Wannier-Stark ladder levels. From these selection
rules, the total spontaneous emission probability is derived to first-order perturbation theory in the quantized
radiation field. It is shown that the power radiated into the dominant TE10 waveguide mode can be enhanced
by an order of magnitude over the free-space value by tuning the Bloch frequency to align with the waveguide
spectral density peak. A general expression for the total spontaneous emission probability is obtained in terms
of arbitrary superlattice single band parameters, showing multiharmonic behavior and cavity tuning properties.
For GaAs-based superlattices, described in the nearest-neighbor tight-binding approximation, the power radi-
ated into the waveguide from spontaneous emission due to Bloch oscillations in the terahertz frequency range
is estimated to be several microwatts.

DOI: 10.1103/PhysRevB.75.045330 PACS number�s�: 73.63.Hs, 72.10.Bg, 73.21.Cd, 73.50.Mx

I. INTRODUCTION

A theory of spontaneous emission �SE�, including the
probability for absorption, for a Bloch electron traversing a
single energy band in an external constant electric field has
been examined recently by the authors and colleagues.1 The
theoretical analysis was fully quantum-mechanical, in that
the radiation field was described as the free-space quantized
electromagnetic field in the Coulomb gauge. Analysis of the
probability amplitude, over integral multiples of the Bloch
period, resulted in selection rules for photon emission in
both photon frequency and wave vector, showing preferred
transitions to the Wannier-Stark ladder levels. Using these
selection rules, total SE probability was derived to first-order
perturbation theory in the quantized radiation field. Although
the output frequency of the radiation could be operationally
tuned to span the gigahertz to terahertz spectral range by
appropriately fixing the constant electric field, the power out-
put for terahertz emission into free space for a GaAs-based
superlattice �SL� was estimated to be about one-tenth of a
microwatt.

In this paper, we analyze the SE of radiation emitted by a
Bloch electron accelerated through the single miniband of a
SL structure, but now with the SL placed in a resonant mi-
crocavity. The intent of the resonant microcavity is well
known,2,3 to redistribute the free-space modal spectral den-
sity so as to increase its value at some frequencies and to
decrease it at others; therefore for an active medium, such as
a radiating SL placed in a cavity structure, the SE rate can be
enhanced or diminished depending upon the tuning of the
emission frequency relative to the cavity mode spectral den-
sity peak. We use this tuning property offered by microcavi-

ties to increase the power output for enhanced SE from
GaAs-based SLs. As examples relevant to the principle idea
of this work, many efforts have been focused on increasing
of the SE rate in optical microcavities.4 An increase of the
overall emitted THz power of more than one order of mag-
nitude has been reported by placing a surface-field emitter
inside a THz cavity.5

II. QUANTUM DYNAMICS AND THEORETICAL
APPROACH

For purposes of the calculation, we assume that the SL
structure is placed in a waveguide with rectangular cross
section Lx�Ly and length Lz, where the coordinate axes are
chosen to be along the waveguide edges. The constant or dc
electric field E is applied along the y axis, which is also the
SL growth direction. The electromagnetic field inside the
waveguide, with assumed perfectly conducting walls, is de-
termined by the guided modes corresponding to standing
waves with respect to the X and Y axes �designated by an
integer pair �m ,n��, and propagating waves along the Z axis
characterized by propagation constant qz. Such modes form a
complete and orthogonal basis set for describing the electro-
magnetic field within the waveguide. In the following, we
will consider only transverse electric �TE� modes, where the
electric field is perpendicular to the direction of propagation.
For practical cases,6 the most important of all confined
modes in this waveguide configuration is the TE10 mode
�m=1, n=0�, which is the dominant mode of a waveguide
with Lx�Ly. This mode gives rise to the lowest attenuation,
and the corresponding electric field Er, for the chosen system

PHYSICAL REVIEW B 75, 045330 �2007�

1098-0121/2007/75�4�/045330�6� ©2007 The American Physical Society045330-1

http://dx.doi.org/10.1103/PhysRevB.75.045330


geometry, is polarized in the direction of the dc field E.
Therefore we consider only one excited, TE10, mode, and
ignore all the other less effective TE and TM modes. For the
remaining TE10 mode, the following conditions on Er and Hr
are in effect, namely that Er,x=Er,z=0 and magnetic field
component Hr,y =0. Therefore it follows that the vector po-
tential Ar for the waveguide field has only one nonzero �y�
component, namely,7

Ar,y = �
qz

�4� � c2

�q�V
sin�qxx��âqeiqzz + âq

†e−iqzz� , �1�

where âq
† and âq are the photon boson creation and annihila-

tion operators, qx=� /Lx, c is the velocity of light in vacuum,
V=LxLyLz, and � is the dielectric constant of the medium
filling the waveguide. The normalization constant in Eq. �1�
is chosen in such a way that the Hamiltonian for the quan-
tized radiation field has the form Hr=�q��qâq

†âq, where
�q=�c�1+ �qz /qx�2�1/2 is the mode dispersion relation, and
�c=qxc /�� is the angular cutoff frequency determined by
the waveguide geometry. The guided mode wavelength is
written as �=�c / ���q /�c�2−1�1/2, where �c=2Lx is the cut-
off wavelength.8

The Bloch dynamical properties are now considered for
the situation in which the electron is confined to a single
miniband, “n0,” of a SL with band energy �n0

�K�, while the
effects of interband coupling9 and electron intraband scatter-
ing are ignored. Therefore the quantum dynamics is de-
scribed by the time-dependent Schrödinger equation

i �
�

�t
��n0

�t�� = H��n0
�t�� , �2�

where the exact Hamiltonian H= �p− �e /c�A�2 /2m0+Vc�r�
+Hr can be reduced to a sum of the following separate
Hamiltonians with H=H0+Hr+HI.

1 Here the first two terms
represent the Hamiltonian H0�t�= �p+pc�t��2 /2m0+Vc�r�, for
a single electron in a periodic crystal potential, Vc�r�, inter-
acting with a homogeneous electric field, and the Hamil-
tonian Hr for the cavity mode electromagnetic radiation field.
The total vector potential in the exact Hamiltonian consists
of A=Ac+Ar, where Ac=−�c /e�pc describes the external
electric field with pc�t�=e	t0

t E�t��dt�, and Ar, given in Eq.
�1�, describes the cavity mode quantized radiation field; also,
m0 is the free-electron mass. The Hamiltonian
HI�t�=−�e /m0c�Ar · �p+pc�t��, for the first-order interaction
between the quantum field and the Bloch electron, couples
both subsystems H0 and Hr, and causes transitions between
the accelerated Bloch electron states through photon absorp-
tion and emission. Then, starting with the reduced Hamil-
tonian H=H0+Hr+HI, use is made of first-order time-
dependent perturbation theory to calculate SE transitions
probabilities between states of H0+Hr while regarding
HI�t�
Ar · �p+pc�t�� as a perturbation.10 The solution to
��n0

�t�� of Eq. �2� can be represented in terms of eigenstates
of basis states �	n0k�t� , �nq,j��= �	n0k�t�� � �nq,j�� of the unper-
turbed Hamiltonian H0+Hr as

��n0
�t�� = �

k
�

�nq,j�
A�nq,j�

�k,t��	n0k�t�,�nq,j��

� exp−
i

�
�

t0

t ��n0
�k�t��� + �

q,j
��qnq,j�dt�� ,

�3�

where the summation over k is carried out over the entire
Brillouin zone, and �nq,j� is specified over all possible com-
binations of photon occupation number nq,j with photon
wave vectors q and certain polarization �j=1,2�. The instan-
taneous eigenstates of H0 are given by9 	n0k�t��r , t�
=
−1/2eiK·run0k�t��r , t�, where un0k�t��r , t� is the periodic part
of the Bloch function, k�t�=K+pc�t� /�, and the values of
the electron wave vector K are determined by the periodic
boundary conditions of the periodic crystal of volume 
.

III. PROBABILITY AMPLITUDES, SELECTION RULES,
AND TOTAL SPONTANEOUS EMISSION

PROBABILITY

A. Probability amplitudes—one-photon emission

For the case of one-photon SE, which assumes that ini-
tially no photons are present in the radiation field, the prob-
ability amplitude in the wave function of Eq. �3� satisfies the
initial condition A�nq,j�

�k , t0�= ��nq,j,0
��K,K0

at time t= t0 when
the external electric field is turned on. Here, K0 and nq,j

0 =0
are the initial values of K and nq,j. The probability amplitude
for SE, Aq�k0 , t�, at any time t, is now evaluated in first-order
perturbation theory1 as

Aq�k0,t� = D�qx/q�1/2�
t0

t

dt�vy�k0 − qs�

� exp−
i

�
�

t0

t�
��n0

�k0� − �n0
�k0 − qs�

− ��q�dt1� , �4�

where D=−i��c� /�c�V, �=e2 / �c is the fine-structure con-
stant, k0�t�=K0+pc�t� /�, qs= �±qx ,0 ,qz� with the “+” used
for s=1 and the “−” used for s=2, vy�k�t��
= �1/ � ��Ky

�n0
�K��k�t�, the y component of Bloch velocity in

the band, and q= �qx
2+qz

2�1/2. Then the spontaneous emission
process results in the total SE probability at a time t, Pe

s�t�,
given by

Pe
s�t� = �

q
�

s=1,2
�Aq�k0,t��2. �5�

In evaluating Aq�k0 , t�, we take into account that the ex-
ternal dc field E is along the Y axis; then, it follows that
k0y�t�=K0y +eE�t− t0� /�. In taking advantage of the periodic
properties of the terms in Eq. �4�, Aq�k0 , t� is easily evaluated
in terms of clocked integral multiples of the Bloch period;
here, t=NB, where B=2� /�B, the time to traverse one pe-
riod of the Brillouin zone. Then the time integral in Eq. �4�
can be replaced by an integral over k0y through the substitu-
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tion dt= �� /eE�dk0y, and the probability amplitude, at inte-
gral multiples of the Bloch period, can be expressed in terms
of an integral over the single Bloch period, B.1,9 Thus we
obtain

�Aq�k0,NB��2 =
sin2�N�q/2�
sin2��q/2�

�Aq�k0,B��2, �6�

where the parameter �q is given by

�q = 2�
�q

�B
+

1

eE
�

K0y

K0y+Gy

dk0y��n0
�k0� − �n0

�k0 − qs�� ,

�7�

and Gy =2� /a, the y component of the SL reciprocal-lattice
vector.

B. Selection rules

From Eq. �6�, it is seen that the quantity �Aq�k0 ,NB��2
will reach its maximum growth value when �q=2��m+��,
where m is a nonzero integer and �→0; for this limit, the
function ���q�=sin2�N�q /2� / sin2��q /2�→N2, i.e., it be-
comes sharply peaked at the resonances �q=2�m with in-
creasing N. It is clear that this condition for maximum
growth establishes the selection rule,1,9 for both the photon
emission frequency, �q, and the key wave-vector component,
qz. Indeed, from the condition �q=2�m, it follows from Eq.
�7� in the radiative long-wavelength limit �qa�1� that one
generally11 has

�q = m�B, qz = ± qzm, qzm � qx��m
�B

�c
�2

− 1�1/2

;

�8�

this gives two conditions, the “Wannier-Stark ladder” reso-
nance frequency condition, and the sustaining wave-vector
cavity resonance condition. These quantization conditions
are obtained, naturally, through the use of instantaneous
eigenstates of the Bloch Hamiltonian without requiring any
ad hoc assumptions concerning the existence of Wannier-
Stark energy states. It is worth emphasizing that Eq. �6�
should be considered simultaneously with Eq. �8�, i.e., both
selection rule conditions for the transition of photon fre-
quency and wave vector should be taken into account explic-
itly in evaluating the total SE probability spectra given by
�Aq�k0 ,B��2. In this regard, we note that although Eq. �6�
predicts the equal relative probabilities calculated at times t
=B and t=NB for different harmonics of Bloch frequency
through

�Aq�k0,NB��2

�Aq�k0,B��2
= ���q = m�B� = N2, �9�

it is also clear from Eqs. �4� and �8� explicitly that the prob-
ability amplitude depends on �B and q independently. There-
fore the total SE probability in Eq. �5� must incorporate, and
will reflect, the importance of both selection rules.

In summary, it is noted here that the probability amplitude
of Eq. �4� is markedly influenced by the time-dependent ex-

ponential phase factor. This phase factor measures the elec-
tron’s field-dependent energy change from state �n0

�k0�t�� to
state �n0

�k0�t�−qs�, while simultaneously emitting a single
photon ��q to the initially prepared vacuum state of the ra-
diation field. This form of the probability amplitude does not
follow the usual golden rule for stationary initial-final state
dependence because the instantaneous Bloch eigenstates as
well as the Hamiltonian describing the external electric field
based on the vector potential gauge are explicitly time de-
pendent. Therefore as an equivalent alternative to the golden
rule, use is made of the periodic nature of the energy band
under consideration, and the maximum growth condition for
the probability amplitude is established at integral multiples
of the Bloch period, NB with N large. Thus maximum
growth in probability amplitude places a quantization condi-
tion on �q in Eq. �7�, namely, that �q=2�m, which results in
the selection rules of Eq. �8� for �q and qz, and allows for the
calculation of the total spontaneous emission probability.

C. Total spontaneous emission probability

The total SE probability is evaluated at time t=NB, Pe
s

= Pe
s�NB�, by substituting �Aq�k0 ,NB��2 from Eq. �6� into

Eq. �5�, and then summing over q. The sum over q in Eq. �5�
has been replaced by an integral over q, taking into account
the TE10 mode density of states and polarization such that
�q�¯�→ �Lz /��	dq�¯� / �1− �qx /q�2�1/2. The integral can
be evaluated by using the property of the integrand which
contains a sharply peaked, symmetric function of q at q
=qm= �qx

2+qzm
2 �1/2 �see Eq. �8��. Thus at every node defined

by the resonance conditions, the slowly varying function of q
in the integrand can be replaced by its value evaluated at q
=qm, and then removed from the integral over q; after that,
the remaining integral can be evaluated to obtain

Pe
s = N

Lz

Lx

�B

�c
�
l=1

lmax

�
s=1

2 �Aql
�k0,B��2

�1 − �qx/ql�2�1/2 . �10�

Here lmax follows from qmax= lmax��B /�c�qx, and determines
the upper limit in the sum over higher Bloch oscillation har-
monics.

The calculation of Pe
s in Eq. �10� requires the use of

Aq�k0 , t� in Eq. �4�, evaluated when t= t0+B,12 and at the
selection rules of Eq. �8�, that is, when ��q=m��B and q
=qm. In addition, the dependence upon q in Eq. �4� is made
explicit by invoking the assumption of photon long-
wavelength limit, which is valid for all periodic potentials of
interest, even SLs, where q�� /a. Thus it follows from Eq.
�4� that

�Aql
�k0,B��2 =

qx

ql��B/2��2 �DIl�2, �11�

where

Il =
1

2�
�

−�

�

d�kvy��k�exp�− il�k� �12�

is the lth Fourier component of the vy��k�, the y component
of electron band velocity, and �k=k0ya; D is defined with Eq.
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�4�. Since the electron velocity component vy��k� depends
on details of the SL miniband structure, it is then clear that
the band-structure dependence appears explicitly in the SE
probability amplitude through the integral Il of Eqs. �11� and
�12�. From this general expression of Eq. �11�, it is immedi-
ately apparent that for electron dynamics in a purely har-
monic miniband, that is, one in which only one single Fou-
rier component of velocity, vy��k�, is nonvanishing so that
l=1, then only the probability amplitude corresponding to
the fundamental Bloch frequency contributes to the total
emission process.

IV. TOTAL SPONTANEOUS EMISSION RADIATION AND
BAND STRUCTURE CHARACTERISTICS

The analysis for total SE radiation characteristics is now
developed by considering a general form of the electron en-
ergy miniband dispersion relation expressed as

�n0
�K� = �n0

�0� + �
l=1

�

�lsin2 laKy

2
+ ���K�� , �13�

where �n0
�0� is the miniband edge, �l is the width of the lth

miniband harmonic of the SL, and ���K�� is the contribu-
tion from the perpendicular components of the band. Such a
form of the energy-band dispersion in the SL growth direc-
tion generally includes long-range coupling over the neigh-
boring QWs with a relative strength measured by the specific
value of the ratio �l+1 /�l�1, which is strongly dependent
upon the extent of wave-function overlap. In particular, for
the well-known case of nearest-neighbor tight-binding
�NNTB� approximation, only �1 with l�1 with purely har-
monic energy dispersion is considered significant, so that
next-nearest-neighbor and longer range QW wave-function
overlaps are assumed to be negligibly small. The electron
group velocity in the general miniband of Eq. �13�, for the
given Ky in the y direction, is then given by vy�Ky�= �1/ � �
����n0

�Ky� /�Ky�=�l=1
� vlsin�laKz�, where vl= la�l /2�, the

maximum velocity associated with the lth miniband of band
width, �l. Substituting the expression for vy�Ky� into Eq.
�12�, one can find that Il=−ivl /2. Then the probability am-
plitude in Eq. �11� reduces to

�Aql
�k0,B��2 = �2�D�2

�cvl
2

�B
3 l

, �14�

where account has been taken for the wave vector ql
=qxl�B /�c. Then, from Eqs. �10� and �14�, again using ql
=qxl�B /�c, the total SE probability becomes

Pe
s = 2�N�1/2 Lx

Ly

�c
2

�B
2 �

l=1

lmax �vl/c�2

l�1 − ��c/l�B�2�1/2 . �15�

This is a general expression for total SE probability which
contains contributions from higher harmonics of Bloch fre-
quency. Note that in the NNTB approximation of Eq. �13�,
obtained by letting �l=�1�1l, so that vl=v1�1l, it follows
from Eqs. �15� that

Pe
s�l = 1� = 2�N

Lx

Ly

v1
2

c2

�1/2�c
2

�B
2�1 − �c

2/�B
2�1/2 , �16�

where v1=a�1 /2�. For a general SL miniband, higher-order
harmonic terms beyond the first harmonic term of the Bloch
frequency appear in the SE probability amplitude �Eq. �14��,
and thus appear in the total SE probability �Eq. �15�� due to
a nonzero contribution from higher Fourier components of
vy��k� �Eq. �12�� that are in resonance with corresponding
harmonics of the miniband energy spectrum. In Eq. �15�, vl
= la�l /2� indexes the strength of the lth harmonic through
the parameter �l, and lth harmonic is indexed through l�B.
In general, high-order contributions are much weaker than
the fundamental one because the coefficients �l in Eq. �13�
rapidly decrease with increasing l.13,14 Note that the SE prob-
ability of the higher harmonics in Eq. �15� can be enhanced
by tuning the emission frequency �q= l�B to align with the
spectral peak of the waveguide TE10 mode, so that it is close
to the waveguide cutoff frequency �c; then, the resonance at
the fundamental Bloch frequency will be suppressed because
it is less than the waveguide cutoff frequency ��B��c�. In
particular, for l=2, the SE probability for the second har-
monic generation is expressed as

Pe
s�l = 2� = �N

Lx

Ly

v2
2

c2

�1/2�c
2

�B
2�1 − ��c/2�B�2�1/2 , �17�

where v2=a�2 /�. It is noted therefore that without scattering
higher-order harmonic generation in the SE spectrum of the
accelerated electron from the SL miniband is a signature for
band anharmonicity in the SL dispersion.

In noting that the SE probability of Bloch radiation
into free space is given by the expression Pfs

s

= �2� /3��N�v1 /c�2,1 we can compare both the probabilities
for SE at fundamental Bloch frequency into free space and a
microcavity analyzing the ratio

� �
Pe

s

Pfs
s =

3Lx�c
2�1/2

�Ly�B
2�1 − ��c

2/�B
2��1/2 , �18�

where use has been made of Eq. �16� for the Pe
s = Pe

s�l=1�.
The enhancement factor � given in Eq. �18� is a function of
the frequency ratio, �B /�c, and increases monotonically with
decreasing ratio; of course, �B /�c reflects the detuning of
the Bloch frequency relative to the TE10 mode cutoff fre-
quency. Taking for an estimation �=12.2 and Lx /Ly =2, one
can find that for �B /�c�1.15 the enhancement factor � in-
creases precipitously with decreasing ratio; at �B /�c�1.15,
��10, indicating that when �B is tuned to within 1.15�c,
the SE enhancement will be increased at least by an order of
magnitude over unity.

V. SPONTANEOUS EMISSION POWER ESTIMATE

For numerical estimations, we assume a GaAs-based SL
structure with the SL lattice parameter a=100 Å, vertical
dimension 9 �m, and lateral cross section 18�1000 �m2

embedded into a rectangular waveguide with horizontal and
vertical dimensions Lx /Ly =2. The electron density in the ac-
tive region is taken to be 5�1016 cm−3. Taking for the SL
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lowest miniband energy width �=20 meV, the maximum
group velocity in the miniband is estimated as vmax=1.6
�107 cm/s. These parameter magnitudes are close to those
of GaAs-based SL structures used to study high-frequency
microwave generation.15–17 Spontaneous emission of a pho-
ton with the energy 10 meV corresponds to the Bloch fre-
quency �B=�B /2�=2.5 THz. The electric field required to
achieve such Bloch frequency is E= ��B /ea=10 kV/cm,
and results in the application of 9 V across the vertical di-
mension of the SL structure.18 The spontaneous emission
probability of radiation into free space can be estimated tak-
ing, for example, N=100 as Pfs

s =4.3�10−7; and the genera-
tion energy per electron ��BPfs

s =4.3�10−6 meV. Since
there is a total of n=8�109 electrons in the active region of
the SL, the generated energy achievable is estimated to be
Pfs=n��BPfs

s =34.4 eV, which corresponds to a power out-
put generated into free space Wfs= ��B /N�Pfs�0.14 �W. Al-
though the power generated into free space is discernibly low
for the SE of Bloch oscillation radiation, it follows from Eq.
�18� that SE probabilities and rates are substantially modified
for the case of radiation into the waveguide mode. We find
from Eq. �18� that �=20, if we take for the detuning param-
eter �B /�c=1.05. Then, using the obtained value for the en-
hancement factor, we estimate the power output generated
into the TE10 waveguide mode as Wwg�3 �W. For purposes
of this estimate, the cavity was assumed to be lossless; fur-
ther studies will consider cavities with finite quality factor.

It is noted that a Bloch oscillation SL does not require
controlled inversion population between Wannier-Stark lad-
der levels to get the desired SE photon frequency; the desired
frequency is controlled by the applied field. Whereas in other
SL light generating devices, such as quantum cascade lasers,
a large inversion population is required to provide stimulated
emission with resulting high threshold current densities and
high heat dissipation. In this regard, the Bloch oscillator in
SE offers a novel option for operating at THz frequencies,
provided the power output can be enhanced in the coherent
Bloch regime.

VI. SUMMARY

A quantum theory has been presented to describe sponta-
neous emission of radiation for a Bloch electron accelerating
across a single energy band of a SL in a constant electric
field while the radiating SL interacts with a resonant micro-

cavity. In the theoretical analysis, use was made of the in-
stantaneous eigenstates of the Bloch Hamiltonian in the ex-
ternal electric field described in terms of the vector potential
gauge, and the spontaneous emission rates were calculated
using first-order time-dependent perturbation theory in the
TE10 waveguide mode quantized radiation field. The analysis
of spontaneous emission amplitude resulted in transition se-
lection rules for both photon emission frequency and wave
number at the Wannier-Stark ladder levels; this result is
found naturally through the use of the instantaneous eigen-
states of the Bloch Hamiltonian with no ad hoc assumptions
employed concerning the existence of Wannier-Stark quan-
tized energy levels within the band.

Using the selection rules, the total spontaneous emission
probability was calculated for a general SL miniband disper-
sion, and was shown to depend upon the fundamental and
higher-order Bloch frequency harmonics as well as the band-
structure parameters; in the limit of nearest-neighbor tight
binding, the results for total spontaneous emission reduced to
the expected sole dependence upon the fundamental Bloch
harmonic.

Finally, it was shown, within the nearest-neighbor tight-
binding model, that the total spontaneous emission probabil-
ity in the microcavity is substantially enhanced over the
comparable free-space value when the Bloch frequency is
tuned by means of the external electric field so as to align
with the spectral peak of the waveguide mode density of
states. In this regard, a theoretical estimate showed that
about a one-order-of-magnitude enhancement factor for
GaAs-based SLs resulted in a power output of about 3 �W.
Here, it is noted that the prime source of the total spontane-
ous emission enhancement is due to the alignment of the
Bloch frequency with the peak of the spectral density of
states; in the spirit of the Purcell effect,2 this will be a gen-
eral feature of any cavity considered for this analysis.

Future directions of this work include studying the limit-
ing effects of dephasing inhomogeneities such as SL inter-
face scattering and other competitive processes20–22 so as to
more realistically evaluate the optimal magnitudes of power
output from the spontaneous emission of SL Bloch oscilla-
tion radiation.
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